Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.201
Filtrar
1.
Microb Cell Fact ; 23(1): 97, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561811

RESUMO

BACKGROUND: Biotransformation of waste oil into value-added nutraceuticals provides a sustainable strategy. Thraustochytrids are heterotrophic marine protists and promising producers of omega (ω) fatty acids. Although the metabolic routes for the assimilation of hydrophilic carbon substrates such as glucose are known for these microbes, the mechanisms employed for the conversion of hydrophobic substrates are not well established. Here, thraustochytrid Schizochytrium limacinum SR21 was investigated for its ability to convert oils (commercial oils with varying fatty acid composition and waste cooking oil) into ω-3 fatty acid; docosahexaenoic acid (DHA). RESULTS: Within 72 h SR21 consumed ~ 90% of the oils resulting in enhanced biomass (7.5 g L- 1) which was 2-fold higher as compared to glucose. Statistical analysis highlights C16 fatty acids as important precursors of DHA biosynthesis. Transcriptomic data indicated the upregulation of multiple lipases, predicted to possess signal peptides for secretory, membrane-anchored and cytoplasmic localization. Additionally, transcripts encoding for mitochondrial and peroxisomal ß-oxidation along with acyl-carnitine transporters were abundant for oil substrates that allowed complete degradation of fatty acids to acetyl CoA. Further, low levels of oxidative biomarkers (H2O2, malondialdehyde) and antioxidants were determined for hydrophobic substrates, suggesting that SR21 efficiently mitigates the metabolic load and diverts the acetyl CoA towards energy generation and DHA accumulation. CONCLUSIONS: The findings of this study contribute to uncovering the route of assimilation of oil substrates by SR21. The thraustochytrid employs an intricate crosstalk among the extracellular and intracellular molecular machinery favoring energy generation. The conversion of hydrophobic substrates to DHA can be further improved using synthetic biology tools, thereby providing a unique platform for the sustainable recycling of waste oil substrates.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Ácidos Docosa-Hexaenoicos/metabolismo , Acetilcoenzima A/metabolismo , Peróxido de Hidrogênio/metabolismo , Estramenópilas/genética , Ácidos Graxos/metabolismo , Biotransformação , Perfilação da Expressão Gênica , Glucose/metabolismo
2.
Nat Commun ; 15(1): 3267, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627361

RESUMO

In vitro biotransformation (ivBT) facilitated by in vitro synthetic enzymatic biosystems (ivSEBs) has emerged as a highly promising biosynthetic platform. Several ivSEBs have been constructed to produce poly-3-hydroxybutyrate (PHB) via acetyl-coenzyme A (acetyl-CoA). However, some systems are hindered by their reliance on costly ATP, limiting their practicality. This study presents the design of an ATP-free ivSEB for one-pot PHB biosynthesis via acetyl-CoA utilizing starch-derived maltodextrin as the sole substrate. Stoichiometric analysis indicates this ivSEB can self-maintain NADP+/NADPH balance and achieve a theoretical molar yield of 133.3%. Leveraging simple one-pot reactions, our ivSEBs achieved a near-theoretical molar yield of 125.5%, the highest PHB titer (208.3 mM, approximately 17.9 g/L) and the fastest PHB production rate (9.4 mM/h, approximately 0.8 g/L/h) among all the reported ivSEBs to date, and demonstrated easy scalability. This study unveils the promising potential of ivBT for the industrial-scale production of PHB and other acetyl-CoA-derived chemicals from starch.


Assuntos
Hidroxibutiratos , Poli-Hidroxibutiratos , Polissacarídeos , Amido , Acetilcoenzima A/metabolismo , Amido/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , NADP/metabolismo , Biotransformação
3.
Sci Rep ; 14(1): 8798, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627476

RESUMO

Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.


Assuntos
Multiômica , Plásticos , Humanos , Polímeros , Biotransformação , Biodegradação Ambiental
4.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611754

RESUMO

In the current study, chromatographic and in silico techniques were applied to investigate the biotransformation of ethyl 5-(4-bromophenyl)-1-(2-(2-(2-hydroxybenzylidene) hydrazinyl)-2-oxoethyl)-2-methyl-1H-pyrrole-3-carboxylate (11b) in hepatocytic media. The initial chromatographic procedure was based on the employment of the conventional octadecyl stationary phase method for estimation of the chemical stability. Subsequently, a novel and rapid chromatographic approach based on a phenyl-hexyl column was developed, aiming to separate the possible metabolites. Both methods were performed on a Dionex 3000 ThermoScientific (ACM 2, Sofia, Bulgaria) device equipped with a diode array detector set up at 272 and 279 nm for analytes detection. An acetonitrile: phosphate buffer of pH 3.5: methanol (17:30:53 v/v/v) was eluted isocratically as a mobile phase with a 1 mL/min flow rate. A preliminary purification from the biological media was achieved by protein precipitation with methanol. A validation procedure was carried out, where the method was found to correspond to all ICH (Q2) and M10 set criteria. Additionally, an in silico-based approach with the online server BioTransformer 3.0 was applied in an attempt to predict the possible metabolites of the title compound 11b. It was hypothesized that four CYP450 isoforms (1A2, 2C9, 3A4, and 2C8) were involved in the phase I metabolism, resulting in the formation of 12 metabolites. Moreover, docking studies were conducted to evaluate the formation of stable complexes between 11b and the aforementioned isoforms. The obtained data indicated three metabolites as the most probable products, two of which (M9_11b and M10_11b) were synthesized by a classical approach for verification. Finally, liquid chromatography with a mass detector was implemented for comprehensive and summarized analysis, and the obtained results revealed that the metabolism of the 11b proceeds possibly with the formation of glucuronide and glycine conjugate of M11_11b.


Assuntos
Hepatócitos , Metanol , Animais , Ratos , Estudos Prospectivos , Biotransformação , Cromatografia Líquida , Hidrazonas , Isoformas de Proteínas
5.
Sci Total Environ ; 925: 171769, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499104

RESUMO

Aquatic ecosystems continue to be threatened by chemical pollution. To what extent organisms are able to cope with chemical exposure depends on their ability to display mechanisms of defense across different organs. Among these mechanisms, biotransformation processes represent key physiological responses that facilitate detoxification and reduce the bioaccumulation potential of chemicals. Biotransformation does not only depend on the ability of different organs to display biotransformation enzymes but also on the affinity of chemicals towards these enzymes. In the present study, we explored the ability of different organs and of two freshwater fish to support biotransformation processes through the determination of in vitro phase I and II biotransformation enzyme activity, and their role in supporting intrinsic clearance and the formation of biotransformation products. Three environmentally relevant pollutants were evaluated: the polycyclic aromatic hydrocarbon (PAH) pyrene (as recommended by the OECD 319b test guideline), the fungicide azoxystrobin, and the pharmaceutical propranolol. Comparative studies using S9 sub-cellular fractions derived from the liver, intestine, gills, and brain of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) revealed significant phase I and II enzyme activity in all organs. However, organ- and species-specific differences were found. In brown trout, significant extrahepatic biotransformation was observed for pyrene but not for azoxystrobin and propranolol. In rainbow trout, the brain appeared to biotransform azoxystrobin. In this same species, propranolol appeared to be biotransformed by the intestine and gills. Biotransformation products could be detected only from hepatic biotransformation, and their profiles and formation rates displayed species-specific patterns and occurred at different magnitudes. Altogether, our findings further contribute to the current understanding of organ-specific biotransformation capacity, beyond the expression and activity of enzymes, and its dependence on specific enzyme-chemical interactions to support mechanisms of defense against exposure.


Assuntos
Ecossistema , Oncorhynchus mykiss , Pirimidinas , Estrobilurinas , Animais , Propranolol , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Pirenos/metabolismo , Biotransformação
6.
Ecotoxicol Environ Saf ; 275: 116258, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547732

RESUMO

Biomethylation is an effective means of arsenic detoxification by organisms living in aquatic environments. Ciliated protozoa (including Tetrahymena species) play an important role in the biochemical cycles of aquatic ecosystems and have a potential application in arsenic biotransformation. This study compared arsenic tolerance, accumulation, methylation, and efflux in 11 Tetrahymena species. Nineteen arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase (arsM) genes, of which 12 are new discoveries, were identified, and protein sequences were studied. We then constructed recombinant cell lines based on the Tetrahymena thermophila (T. thermophila) wild-type SB210 strain and expressed each of the 19 arsM genes under the control of the metal-responsive the MTT1 promoter. In the presence of Cd2+ and As(V), expression of the arsM genes in the recombinant cell lines was much higher than in the donor species. Evaluation of the recombinant cell line identified one with ultra-high arsenic methylation enzyme activity, significantly higher arsenic methylation capacity and much faster methylation rate than other reported arsenic methylated organisms, which methylated 89% of arsenic within 6.5 h. It also had an excellent capacity for the arsenic detoxification of lake water containing As(V), 56% of arsenic was methylated at 250 µg/L As(V) in 48 h. This study has made a significant contribution to our knowledge on arsenic metabolism in protozoa and demonstrates the great potential to use Tetrahymena species in the arsenic biotransformation of aquatic environments.


Assuntos
Arsênio , Tetrahymena thermophila , Arsênio/metabolismo , Ecossistema , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Biotransformação , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
7.
J Agric Food Chem ; 72(14): 7991-8005, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38544458

RESUMO

The biotransformation of patchouli alcohol by Cladosporium cladosporioides afforded 31 products, including 21 new ones (1-3, 5, 6, 8-14, and 17-25). Their structures were determined by extensive spectroscopic data analysis (1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, ROESY, and HRESIMS), and the absolute configuration of compounds 1, 2, 8, 9, and 17 was determined by single-crystal X-ray diffraction using Cu Kα radiation. Structurally, compounds 21-24 were patchoulol-type norsesquiterpenoids without Me-12. Among them, a Δ3(4) double bond existed in compounds 21 and 22; a three-membered ring was formed between C-4, C-5, and C-6 in compound 23; an epoxy moiety appeared between C-3 and C-4 in compound 24. Furthermore, the biotransformation products 9, 10, 12, and 25 showed potent anti-influenza virus activity with EC50 values of 2.11, 7.94, 20.87, and 3.45 µM, respectively.


Assuntos
Sesquiterpenos , Sesquiterpenos/química , Cladosporium/química , Biotransformação
8.
Artigo em Inglês | MEDLINE | ID: mdl-38428625

RESUMO

Liver biotransformation enzymes have long been thought to enable animals to feed on diets rich in xenobiotic compounds. However, despite decades of pharmacological research in humans and rodents, little is known about hepatic gene expression in specialized mammalian herbivores feeding on toxic diets. Leveraging a recently identified population of the desert woodrat (Neotoma lepida) found to be highly tolerant to toxic creosote bush (Larrea tridentata), we explored the expression changes of suites of biotransformation genes in response to diets enriched with varying amounts of creosote resin. Analysis of hepatic RNA-seq data indicated a dose-dependent response to these compounds, including the upregulation of several genes encoding transcription factors and numerous phase I, II, and III biotransformation families. Notably, elevated expression of five biotransformation families - carboxylesterases, cytochromes P450, aldo-keto reductases, epoxide hydrolases, and UDP-glucuronosyltransferases - corresponded to species-specific duplication events in the genome, suggesting that these genes play a prominent role in N. lepida's adaptation to creosote bush. Building on pharmaceutical studies in model rodents, we propose a hypothesis for how the differentially expressed genes are involved in the biotransformation of creosote xenobiotics. Our results provide some of the first details about how these processes likely operate in the liver of a specialized mammalian herbivore.


Assuntos
Larrea , Humanos , Animais , Larrea/metabolismo , Creosoto/toxicidade , Creosoto/metabolismo , Herbivoria/genética , Biotransformação , Roedores/metabolismo , Sigmodontinae/genética , Sigmodontinae/metabolismo
9.
J Agric Food Chem ; 72(10): 5293-5306, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38441033

RESUMO

The present study evaluated the potential of endogenous enzymes and probiotics in transforming bioactive metabolites to reduce the purgative effect and improve the functional activity of Cassiae Semen and verified and revealed the biotransformation effect of endogenous enzymes. Although probiotics, especially Lactobacillus rhamnosus, exerted the transformation effect, the endogenous enzymes proved to be more effective in transforming the components of Cassiae Semen. After biotransformation by endogenous enzymes for 12 h, the levels of six anthraquinones in Cassiae Semen increased by at least 2.98-fold, and free anthraquinones, total phenolics, and antioxidant activity also showed significant improvement, accompanied by an 82.2% reduction in combined anthraquinones responsible for the purgative effect of Cassiae Semen. Further metabolomic analysis revealed that the biotransformation effect of endogenous enzymes on the bioactive metabolites of Cassiae Semen was complex and diverse, and the biotransformation of quinones and flavonoids was particularly prominent and occurred by three primary mechanisms, hydrolyzation, methylation, and dimerization, might under the action of glycosyl hydrolases, SAM-dependent methyltransferases, and CYP450s. Accordingly, biotransformation by endogenous enzymes emerges as a mild, economical, food safety risk-free, and effective strategy to modify Cassiae Semen into an excellent functional food.


Assuntos
Cassia , Medicamentos de Ervas Chinesas , Probióticos , Catárticos , Antraquinonas , Probióticos/análise , Sementes/química , Biotransformação
10.
Biotechnol J ; 19(3): e2300642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472088

RESUMO

The biosynthesis of cadaverine from lysine is an environmentally promising technology, that could contribute to a more sustainable approach to manufacturing bio-nylon 5X. However, the titer of biosynthesized cadaverine has still not reached a sufficient level for industrial production. A powerful green cell factory was developed to enhance cadaverine production by regulating lipopolysaccharide (LPS) genes and improving membrane permeability. Firstly, 10 LPS mutant strains were constructed and the effect on the growth was investigated. Then, the lysine decarboxylase (CadA) was overexpressed in 10 LPS mutant strains of Escherichia coli MG1655 and the ability to produce cadaverine was compared. Using 20.0 g L-1 of L-lysine hydrochloride (L-lysine-HCl) as the substrate for the biotransformation reaction, Cad02 and Cad06 strains exhibited high production levels of cadaverine, with 8.95 g L-1 and 7.55 g L-1 respectively while the control strain Cad00 only 4.92 g L-1 . Directed evolution of CadA was also used to improve its stability under alkaline conditions. The cadaverine production of the Cad02-M mutant stain increased by 1.86 times at pH 8.0. Finally, the production process was scaled up using recombinant whole cells as catalysts, achieving a high titer of 211 g L-1 cadaverine (96.8%) by fed-batch bioconversion. This study demonstrates the potential role of LPS in enhancing the efficiency of mass transfer between substrate and enzymes in vivo by increasing cell permeability. The results indicate that the argumentation of cell permeability could not only significantly enhance the biotransformation efficiency of cadaverine, but also provide a universally applicable, straightforward, environment-friendly, and cost-effective method for the biosynthesis of other high-value chemicals.


Assuntos
Escherichia coli , Lipopolissacarídeos , Escherichia coli/genética , Cadaverina/metabolismo , Lipopolissacarídeos/metabolismo , Catálise , Biotransformação , Lisina/metabolismo
11.
Sci Total Environ ; 922: 171270, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428603

RESUMO

Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.


Assuntos
Clorofenóis , Ciclídeos , Tilápia , Triclosan , Poluentes Químicos da Água , Animais , Humanos , Tilápia/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Distribuição Tecidual , Ciclídeos/metabolismo , Biotransformação , Sulfatos/metabolismo , Poluentes Químicos da Água/análise
12.
Chemosphere ; 353: 141580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430943

RESUMO

Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.


Assuntos
Amidas , Compostos de Amônio , Pirazinas , Esgotos , Amônia/toxicidade , Amônia/metabolismo , Rios , Oxirredução , Ácido Nitroso , Biotransformação , Antivirais/toxicidade , Reatores Biológicos , Nitritos
13.
Sci Total Environ ; 923: 171395, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447730

RESUMO

Ammonia-oxidizing microorganisms, including AOA (ammonia-oxidizing archaea), AOB (ammonia-oxidizing bacteria), and Comammox (complete ammonia oxidization) Nitrospira, have been reported to possess the capability for the biotransformation of sulfonamide antibiotics. However, given that nitrifying microorganisms coexist and operate as communities in the nitrification process, it is surprising that there is a scarcity of studies investigating how their interactions would affect the biotransformation of sulfonamide antibiotics. This study aims to investigate the sulfamonomethoxine (SMM) removal efficiency and mechanisms among pure cultures of phylogenetically distinct nitrifiers and their combinations. Our findings revealed that AOA demonstrated the highest SMM removal efficiency and rate among the pure cultures, followed by Comammox Nitrospira, NOB, and AOB. However, the biotransformation of SMM by AOA N. gargensis is reversible, and the removal efficiency significantly decreased from 63.84 % at 167 h to 26.41 % at 807 h. On the contrary, the co-culture of AOA and NOB demonstrated enhanced and irreversible SMM removal efficiency compared to AOA alone. Furthermore, the presence of NOB altered the SMM biotransformation of AOA by metabolizing TP202 differently, possibly resulting from reduced nitrite accumulation. This study offers novel insights into the potential application of nitrifying communities for the removal of sulfonamide antibiotics (SAs) in engineered ecosystems.


Assuntos
Sulfamonometoxina , Sulfamonometoxina/metabolismo , Amônia/metabolismo , Ecossistema , Microbiologia do Solo , Oxirredução , Filogenia , Bactérias/metabolismo , Archaea/metabolismo , Nitrificação , Biotransformação , Antibacterianos/metabolismo , Sulfanilamida/metabolismo
14.
Food Chem Toxicol ; 186: 114564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438009

RESUMO

Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.


Assuntos
Arseniatos , Intoxicação por Arsênico , Arsênio , Microbioma Gastrointestinal , Animais , Camundongos , Arsênio/toxicidade , Arsênio/metabolismo , Bioacumulação , Camundongos Endogâmicos C57BL , Biotransformação , Mamíferos
15.
BMC Microbiol ; 24(1): 75, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454365

RESUMO

BACKGROUND: The mycotoxin zearalenone (ZEA) produced by toxigenic fungi is widely present in cereals and its downstream products. The danger of ZEA linked to various human health issues has attracted increasing attention. Thus, powerful ZEA-degrading or detoxifying strategies are urgently needed. Biology-based detoxification methods are specific, efficient, and environmentally friendly and do not lead to negative effects during cereal decontamination. Among these, ZEA detoxification using degrading enzymes was documented to be a promising strategy in broad research. Here, two efficient ZEA-degrading lactonases from the genus Gliocladium, ZHDR52 and ZHDP83, were identified for the first time. This work studied the degradation capacity and properties of ZEA using purified recombinant ZHDR52 and ZHDP83. RESULTS: According to the ZEA degradation study, transformed Escherichia coli BL21(DE3) PLySs cells harboring the zhdr52 or zhdp83 gene could transform 20 µg/mL ZEA within 2 h and degrade > 90% of ZEA toxic derivatives, α/ß-zearalanol and α/ß-zearalenol, within 6 h. Biochemical analysis demonstrated that the optimal pH was 9.0 for ZHDR52 and ZHDP83, and the optimum temperature was 45 °C. The purified recombinant ZHDR52 and ZHDP83 retained > 90% activity over a wide range of pH values and temperatures (pH 7.0-10.0 and 35-50 °C). In addition, the specific activities of purified ZHDR52 and ZHDP83 against ZEA were 196.11 and 229.64 U/mg, respectively. The results of these two novel lactonases suggested that, compared with ZHD101, these two novel lactonases transformed ZEA into different products. The slight position variations in E126 and H242 in ZDHR52/ZEA and ZHDP83/ZEA obtained via structural modelling may explain the difference in degradation products. Moreover, the MCF-7 cell proliferation assay indicated that the products of ZEA degradation using ZHDR52 and ZHDP83 did not exhibit estrogenic activity. CONCLUSIONS: ZHDR52 and ZHDP83 are alkali ZEA-degrading enzymes that can efficiently and irreversibly degrade ZEA into non-estrogenic products, indicating that they are potential candidates for commercial application. This study identified two excellent lactonases for industrial ZEA detoxification.


Assuntos
Gliocladium , Zearalenona , Zeranol/análogos & derivados , Humanos , Zearalenona/química , Gliocladium/metabolismo , Biotransformação
16.
Environ Pollut ; 348: 123883, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548154

RESUMO

The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Humanos , Retardadores de Chama/metabolismo , Triazinas/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Biotransformação , Oxirredução
17.
Arch Microbiol ; 206(4): 176, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493413

RESUMO

The stems and leaves of Panax notoginseng contain high saponins, but they are often discarded as agricultural waste. In this study, the predominant ginsenosides Rg1, Rc, and Rb2, presented in the stems and leaves of ginseng plants, were biotransformed into value-added rare ginsenosides F1, compound Mc1 (C-Mc1), and Rd2, respectively. A fungal strain YMS6 (Penicillium sp.) was screened from the soil as a biocatalyst with high selectivity for the deglycosylation of major ginsenosides. Under the optimal fermentation conditions, the yields of F1, C-Mc1, and Rd2 were 97.95, 68.64, and 79.58%, respectively. This study provides a new microbial resource for the selective conversion of protopanaxadiol-type and protopanaxatriol-type major saponins into rare ginsenosides via the whole-cell biotransformation and offers a solution for the better utilization of P. notoginseng waste.


Assuntos
Ginsenosídeos , Saponinas , Agricultura , Biotransformação
18.
J Hazard Mater ; 469: 133975, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452667

RESUMO

Doxycycline (DOX) represents a second-generation tetracycline antibiotic that persists as a challenging-to-degrade contaminant in environmental compartments. Despite its ubiquity, scant literature exists on bacteria proficient in DOX degradation. This study marked a substantial advancement in this field by isolating Chryseobacterium sp. WX1 from an activated sludge enrichment culture, showcasing its unprecedented ability to completely degrade 50 mg/L of DOX within 44 h. Throughout the degradation process, seven biotransformation products were identified, revealing a complex pathway that began with the hydroxylation of DOX, followed by a series of transformations. Employing an integrated multi-omics approach alongside in vitro heterologous expression assays, our study distinctly identified the tetX gene as a critical facilitator of DOX hydroxylation. Proteomic analyses further pinpointed the enzymes postulated to mediate the downstream modifications of DOX hydroxylation derivatives. The elucidated degradation pathway encompassed several key biological processes, such as the microbial transmembrane transport of DOX and its intermediates, the orchestration of enzyme synthesis for transformation, energy metabolism, and other gene-regulated biological directives. This study provides the first insight into the adaptive biotransformation strategies of Chryseobacterium under DOX-induced stress, highlighting the potential applications of this strain to augment DOX removal in wastewater treatment systems containing high concentrations of DOX.


Assuntos
Chryseobacterium , Doxiciclina , Chryseobacterium/genética , Multiômica , Proteômica , Biotransformação
19.
Environ Sci Technol ; 58(13): 5739-5749, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456395

RESUMO

Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Gravidez , Recém-Nascido , Feminino , Plastificantes , Mecônio/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Ácidos Ftálicos/metabolismo , Cabelo/metabolismo , Organofosfatos , Biotransformação , Ésteres/metabolismo , Exposição Ambiental/análise
20.
Water Res ; 254: 121405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447376

RESUMO

The accumulation and transformation of lead (Pb) and arsenic (As) during the digestion of sewage sludge (SS) by black soldier fly larvae (BSFL) remain unclear. In this study, we used 16 s rRNA and metagenomic sequencing techniques to investigate the correlation between the microbial community, metalloregulatory proteins (MRPs), and Pb and As migration and transformation. During the 15-day test period, BSFL were able to absorb 34-48 % of Pb and 32-45 % of As into their body. Changes in bacterial community abundance, upregulation of MRPs, and redundancy analysis (RDA) results confirmed that ZntA, EfeO, CadC, ArsR, ArsB, ArsD, and ArsA play major roles in the adsorption and stabilization of Pb and As, which is mainly due to the high contribution rates of Lactobacillus (48-59 %) and Enterococcus (21-23 %). Owing to the redox reaction, the regulation of the MRPs, and the change in pH, the Pb and As in the BSFL residue were mainly the residual fraction (F4). The RDA results showed that Lactobacillus and L.koreensis could significantly (P < 0.01) reduce the reducible fraction (F2) and F4 of Pb, whereas Firmicutes and L.fermentum can significantly (P < 0.05) promote the transformation of As to F4, thus realizing the passivation Pb and As. This study contributes to the understanding of Pb and As in SS adsorbed by BSFL and provides important insights into the factors that arise during the BSFL-mediated migration of Pb and As.


Assuntos
Arsênio , Dípteros , Eliminação de Resíduos , Animais , Larva/metabolismo , Esgotos , 60659 , Chumbo/metabolismo , Alimentos , Biotransformação , Bactérias , Lactobacillus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...